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Multiple Bilingual Dictionary Induction by Reusing the 

Encoders of Hub Languages 

Abia Putrama HERLIANTO 

Abstract 

Indonesia, with over 700 languages spoken by 280 million people, is highly 

diverse linguistically. Many of these languages are endangered, increasingly 

replaced by Indonesian. The lack of digital resources for these low-resource 

languages hinders their revitalisation and integration into Natural Language 

Processing (NLP) applications, making digital corpora crucial for their survival. 

    Developing bilingual dictionaries is the first step in creating these corpora. 

Traditional methods are labour-intensive and costly. Bilingual dictionary 

induction using neural network models is more efficient, learning word 

transformations even with minimal corpora. However, creating dictionaries for 

all language pairs remains costly and the performance can be improved. 

    This research proposes reusing the encoder of a hub language to induce 

multiple bilingual dictionaries among closely related languages. In a sequence-to-

sequence model, the encoder encodes the input word in the source language 

which is then fed to the decoder which produces the output word in the target 

language. By reusing the encoder previously trained on the same source language 

with a different target language, knowledge already learnt from the previous 

language pairs would be transferred. By clustering similar languages and 

producing dictionaries only for pairs involving the hub language, resources and 

effort are significantly reduced. This method leverages shared linguistic features 

and transfer learning to enhance performance and streamline the process. To this 

end, we address the following issues. 

Hub Language Identification 

    This research proposes using a hub language, which is the pivot language 

between a group of closely related languages. Out of these languages, the question 

that we address is which language should be the hub language and based on what 

criteria. 

Optimal Encoder-Reusing Training Order 

    In the proposed multiple bilingual dictionary induction process, the models 
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for each language pair are not trained together at once but rather individually in 

order. The encoder is reused after the first language pair and trained again on the 

second language pair and so on. Whether the order of the language pairs has any 

effect or not and, if there is, which order is optimal or not is one question in this 

research. 

  To solve the first issue, hub language identification methods based on 

summed distance, distance to the centre, and dataset size were compared. 

Experiments involving all three identified hub languages were conducted to see 

which one performed the best. 

    To solve the second issue, several training orders based on random order, 

similarity, or dataset size were conducted. The results were compared with 

baseline models that were trained separately without reusing any encoders. The 

results were validated using k-fold cross validation. 

    The languages used were Indonesian, the Minangkabau language, Malay, 

Palembang Malay, and Banjarese Malay, which were all in one cluster. The 

contribution of this research to the issue is as follows. 

Hub Language Identification 

    Three methods to determine the hub language of a group of closely related 

languages were described: summed distance-based, medoid-based, and dataset 

size-based. They are Malay, Minangkabau, and Indonesian, respectively. 

Optimal Encoder-Reusing Training Order 

    The optimal encoder-reusing training order is a combination of 

considerations of both dataset size and similarity. The first language pair was 

trained for the language pair with the largest dataset size (Indonesian-

Minangkabau) and the rest of the language pairs were trained in descending order 

of similarity. The results outperformed the baseline models trained individually 

and models trained with random order. Indonesian-Malay, Indonesian-

Banjarese Malay, and Indonesian-Palembang Malay showed accuracies of 

66.24%, 65.96%, and 64.43%. These outperformed the baselines and random 

orders across the board, ranging from improvements of 0.29% to 1.75%. 
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Chapter 1 Introduction 

Indonesia is a country in Southeast Asia, notable for being the largest country 

in the region and the 15th largest country in the world [1]. With almost 280 million 

people spread across 17,504 islands, significant diversity exists among its 

population [2, 3, 4]. This is true for linguistic diversity as well with more than 700 

different languages spoken by 1,300 ethnic groups [5, 6]. This makes Indonesia 

the second most linguistically diverse country in the world with about 10% of all 

the world’s languages in Indonesia [6, 7]. According to Ethnologue, most of these 

languages belong to the Austronesian language family while about 200 belong to 

various Papuan language families [6]. 

However, this wealth of linguistic diversity is at risk. Although exactly how 

many distinct languages are spoken in Indonesia is a matter of academic debate, 

by any metric the picture is a stark one. According to Ethnologue, 506 out of 704 

languages in Indonesia are considered endangered, which is defined as languages 

where “it is no longer the norm that children learn and use this language” [6]. 14 

are already extinct. According to the Atlas of the World’s Languages in Danger of 

Disappearing, at least 83 of the 640 languages in Indonesia are endangered while 

14 are extinct [8]. Although there is no direct oppression of local languages in 

favour of the national language Indonesian, because education is primarily 

conducted in Indonesian children are increasingly conditioned to see Indonesian 

as superior to their mother tongue, precipitating the endangerment of these 

languages [8]. 

Language revitalisation efforts are in Indonesia are significantly hampered by 

the lack of resources. Most of the languages of Indonesia are classified as low-

resource languages, meaning they have little to no digital corpora [9]. Not only 

digital, many of these languages also lack physical corpora, such as dictionaries, 

which are crucial for language revitalisation efforts. The scarcity of these 

resources makes it challenging to develop language classes and produce 

educational materials like textbooks, further impeding efforts to preserve and 

revitalise these languages. 

Efforts led by the Social Intelligence Laboratory’s Professor Yohei Murakami 



 

 2 

at the Indonesia Language Sphere aim to develop comprehensive bilingual 

dictionaries for Indonesian ethnic languages [10]. Creating these dictionaries is a 

crucial first step in enriching low-resource languages, providing a foundation for 

language studies and additional educational materials. This initiative benefits 

both native speakers and learners. Notably, one advancement of the project 

includes employing a constraint-based technique for bilingual lexicon induction 

using a pivot language, particularly effective for closely related languages [11, 12]. 

However, creating bilingual dictionaries manually is labour-intensive, time-

consuming, and resource-expensive. Several challenges need addressing. First, 

due to high costs, prioritising certain language pairs can maximise effectiveness 

while minimising expenses. Second, there is room for improving the performance 

of existing methods. For instance, Resiandi et al. proposed a neural network-

based approach that builds on the constraint-based technique to induce bilingual 

dictionaries more efficiently [13]. 

This research focuses on 30 languages spoken in Indonesia and 1 in Malaysia, 

selected based on the number of speakers and their availability in the Automated 

Judgment Similarity Program (ASJP) database [14]. A language similarity matrix 

for these 31 languages was constructed to create a coordinate representation on a 

Cartesian plane, where distances indicate language similarity. K-means clustering 

was then applied to categorise these languages into groups based on their 

similarities. 

For reasons of corpus availability, a group of languages consisting of Malayic 

languages was selected. This group includes Indonesian, Malay, Palembang 

Malay, Banjarese Malay, and Minangkabau, all of which share over 60% similarity 

according to the ASJP database [14]. 

Firstly, methods to determine the hub language were investigated. Two 

methods were considered. The first method involved summing the distances from 

each language to all other languages and choosing the language with the smallest 

summed distance. The second method used medoids to find the language with the 

most central position on the plane. However, due to corpus availability, 

Indonesian was ultimately chosen as the hub language despite not being selected 

by either method. 
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Secondly, multiple bilingual induction models were developed, all using 

Indonesian as the source language. Baseline models were trained independently 

for each language pair. For the other models, training followed a specific order, 

reusing the encoder from the first language pair until the final one. Various orders 

were investigated, including those based on language similarity, data size (both 

descending and ascending), and random sequences. These models utilised a Bi-

LSTM as the encoder, an LSTM as the decoder, and employed one-hot character-

level embedding for tokenisation. 

This thesis is organised into 6 chapters. The first chapter covers the linguistic 

diversity of Indonesia, challenges faced by its endangered languages, and the 

importance of creating digital corpora for them. It also introduces the main 

objectives and contributions of the research. The second chapter reviews existing 

related literature on bilingual dictionary induction, language families, and 

encoder reuse. The third chapter covers the first part of the research including 

language selection, similarity-based clustering, and hub language selection. The 

fourth chapter covers the methodology of the multiple bilingual dictionary 

induction process. Chapter 5 discusses the training and results of the experiments, 

while Chapter 6 draws the conclusions. 
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Chapter 2 Related Work 

This chapter provides an overview of existing research and related work on the 

methods and knowledge utilised in this study. It examines the current state of 

bilingual dictionary induction and language families, as well as the current state 

of encoder reuse. 

2.1 Bilingual Dictionary Induction 

Creating bilingual dictionaries manually is a labour-intensive, time-consuming, 

and expensive process. It requires not only native speakers of both languages but 

also bilingual speakers and linguistic experts to ensure accuracy and 

comprehensiveness. The process is labour-intensive due to the need for detailed 

manual work in creating each dictionary entry, including definitions and 

contextual usage. It is time-consuming because each entry must be meticulously 

crafted and reviewed, which can take significant amounts of time. Additionally, it 

is expensive because of the substantial resources required, including financial 

costs and human effort. The automatic induction of bilingual dictionaries could 

significantly streamline this process, speeding up dictionary creation while 

reducing associated costs. 

Early work focused on high-resource languages. Fung showed the effectiveness 

of noisy parallel corpora and comparable corpora for English and Chinese [15]. Li 

and Gaussier proposed a method to improve comparable corpora which in turn 

can improve bilingual lexicon extraction [16]. But bilingual lexicon extraction 

becomes a more difficult task for low-resource languages which are by definition 

lacking, either partially or completely, in parallel and comparable corpora [11]. 

One avenue of research in bilingual dictionary induction is pivot-based 

bilingual dictionary induction. This method creates a new bilingual dictionary 

from two separate dictionaries using a pivot language. For instance, with existing 

Indonesian-Malay and Indonesian-Minangkabau dictionaries, Indonesian serves 

as the pivot to induce a Malay-Minangkabau dictionary. Tanaka and Umemura 

implemented this to create a Japanese-French dictionary using English as the 

pivot language [17]. Ambiguities and polysemy in the third language cause issues, 
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however. For example, the Japanese word “競争” (kyousou) could be translated 

into the English words “competition”, “contest”, and “race”. The word “race” 

complicates matters when looking for the French translations due to it being 

polysemous. “Race” has two meanings, the first one being “to compete” which is 

related in meaning to “競争”. However, the second one is in the context of “human 

race”, which is therefore not a correct translation. This second meaning leads to 

the French word “race” of the same meaning. The authors proposed a solution 

using the structure of dictionaries to measure the nearness of word meanings and 

inverse consultation to select appropriate translations. 

 

 

Figure 1 Equivalence candidates for “競争” [17]. 

Wushouer et al. and Nasution et al. proposed approaches treating pivot-based 

bilingual lexicon induction for low-resource languages as an optimisation 

problem [11, 12, 18]. Their approaches used constraints to determine whether two 

words through a pivot language are translation pairs. However, implementing 

this approach on a large scale to create multiple bilingual dictionaries remains a 

challenge. In particular, determining which language pairs should be prioritised 

is still an open question. 

Resiandi et al. proposed utilising neural networks in bilingual dictionary 

induction [13]. Their purpose to create an Indonesian-Minangkabau dictionary 

using a model that would learn the patterns to transform words from Indonesian 

to Minangkabau using a comparatively small dataset, making use of the fact that 
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Indonesian and Minangkabau are closely related languages. They tackled two 

questions, namely which tokenisation method would be better and which 

combination of Long Short-Term Memory (LSTM) models and Bidirectional 

LSTMs (Bi-LSTM) work best. They experimented with character-level one-hot 

embedding using a Bi-LSTM as the encoder and an LSTM as the decoder, with 

character-level one-hot embedding using LSTMs for both the encoder and 

decoder, and with Byte Pair Encoding (BPE) with a Bi-LSTM as the encoder and 

an LSTM as the decoder. They found that character-level one-hot embedding 

using a Bi-LSTM as the encoder and an LSTM as the decoder performed best, with 

an average accuracy of 83.55%. The details of the results can be seen in Table 1. 

Table 1 Resiandi et al.’s results [13]. 

Method Average Accuracy 
BPE 79.93% 

Bi-LSTM -> LSTM with Character-
Level One-Hot Embedding 

83.55% 

LSTM -> LSTM with Character-Level 
One-Hot Embedding 

73% 
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Figure 2 Resiandi et al.’s character-level sequence-to-sequence model 

architecture [13]. In this example, the Minangkabau word adolah is tokenised 

and the Indonesian translation adalah is output. 
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Figure 3 Epoch loss from validation and training on the character-level 

sequence-to-sequence model from Resiandi et al. [13]. 

2.2 Language Families and Similarities 

Most languages are not isolated; they belong to groupings of languages called 

language families. A language family is a group of languages related through 

descent from a hypothetical, often unattested, ancestral language called the proto-

language [19]. Over time, this proto-language then diverges into different 

daughter languages. These changes are due to a variety of causes, including 

influence from languages previously spoken in the area, changes that happen in 

some daughter languages are not shared with other daughter languages due to 

geographical isolation, or cultural elements. These daughter languages would 

then go on to experience the same thing, creating new daughter languaghes and 

leading to subfamilies. 

One well-known example of a language family is the Romance languages. This 

family consists of numerous languages spoken initially in Europe but now 

throughout the world, including Spanish, French, Italian, Portuguese, Romanian, 

and many others [19]. All these languages were descended from the Vulgar Latin 

spoken in the Roman Empire. Initially, local dialects of Vulgar Latin developed 

through the regions of the Roman Empire, but geographical separation and the 

passage of time led to gradual changes in these dialects eventually leading to 
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speakers of one region not being able to understand speakers of another region, 

eventually creating the modern Romance languages and their dialects. A 

comparison of several words in several Romance languages can be seen in Table 

2. 

Table 2 Comparison of words from Latin and their descendants across various 

Romance languages [20, 21, 22, 23, 24]. 

English Latin French  Spanish Portuguese Italian 
man homo homme hombre homem uomo 
son filius fils hijo filho figlio 

water aqua eau agua água acqua 
three tres trois tres três tre 
four quattuor quatre cuatro quatro quattro 

 

The Romance languages are themselves a subfamily of the greater Indo-

European language family, one of the world’s primary language family and the 

world’s most-spoken language family [6, 19]. This family includes 144 languages, 

comprised of a diverse range of languages such as English and Hindi. All these 

languages are believed to have descended from a common ancestor language 

spoken thousands of years ago called Proto-Indo-European. A non-exhaustive 

family tree of the Indo-European languages can be seen in Figure 4 and 

comparisons between words from various Indo-European languages can be seen 

in Table 3. 

Membership in a language family is determined through research in historical 

and comparative linguistics. Languages within the same family are identified by 

shared features that cannot be explained by chance or the effects of language 

contact [25]. Therefore, it is common for related languages to share features, 

especially closely related languages, which often exhibit numerous similarities 

and sometimes have limited mutual intelligibility [26]. 
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Figure 4 A non-exhaustive family tree of the Indo-European languages [19]. * 

denotes reconstructed forms. 

Table 3 Comparison of words from five Indo-European languages [19]. 

English Sanskrit Greek Latin Gothic 
father pitar pater pater fadar 
foot padam poda pedem fotu 
brother bhratar phrater frater brother 
bear bharami phero fero baira 
senile sanah hence senex sinista 

 

Most Indonesian languages also belong to a single language family, namely the 

Austronesian language family, which is one of the world’s primary language 
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families and is spoken in a wide area ranging from Madagascar to Southeast Asia, 

and to most of Oceania [4]. The Austronesian languages are posited to have 

originated on Formosa Island (Taiwan) and to have gradually spread from there, 

including to most of Indonesia [27]. As a result, most Indonesian languages share 

features and have similarities to each other 

Table 4 Comparison of various words across Austronesian languages spoken in 

Indonesia [28, 29, 30, 31]. The Banjarese words are from the Hulu dialect, while 

the Javanese words are from the Surabaya dialect. 

English Indonesian Minangkabau Banjarese Javanese Sundanese 
one satu ciek asa siji hiji 
two dua duo dua loro dua 

person orang urang urang uwong jelema 
house rumah rumah rumah omah imah 

we kita, kami kito, kami kami 
awaké 
dhéwé 

arurang, 
urang 

sadayana, 
urang 

sararea 

 

 

Figure 5 One interpretation of the Austronesian language family tree [32]. PAn 

refers to Proto-Austronesian, MP to Malayo-Polynesian, WMP to West-Malayo-

Polynesian, CEMP to Central-East-Malayo-Polynesian, CMP to Central-Malayo-

Polynesian, and EMP to East-Central-Malayo-Polynesian. 
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2.3 Encoder Reuse 

Encoder reuse in neural network models, particularly in the context of natural 

language processing (NLP), involves sharing the same encoder across multiple 

tasks or language pairs. This approach leverages the shared linguistic knowledge 

captured by the encoder, which can improve model efficiency and performance. 

Several studies have demonstrated the benefits of encoder reuse. 

Johnson et al. experimented with creating a multilingual neural machine 

translation system capable of zero-shot translation [33]. They did this without 

changing the architecture, using a regular neural machine translation model 

composed of an encoder, a decoder, attention, and a shared wordpiece vocabulary. 

The only change they made was to the input data. They added a token to the input 

sentence to indicate the required target language. For example, for English to 

Japanese data they would add the <2ja> token to signify that this sentence is for 

translating to Japanese, resulting in “<2ja> How are you? -> お元気ですか？”. 

The model was trained on various language pairs depending on the experiment 

they conducted. These languages were English, German, French, Portuguese, 

Spanish, Japanese, and Korean. For zero-shot translation specifically, the model 

was trained for English-Portuguese and English-Spanish. They trained two 

models. Model 1 was trained with Portuguese -> English and English -> Spanish 

data while Model 2 was trained with English <-> Portuguese and English <-> 

Spanish data. BLEU score was used for evaluation. 

 

 

Figure 6 Illustration of the architecture of Johnson et al. in terms of encoders 

and decoders. 

Their results showed that the model succeeded in implicit bridging, being able 

to translate between Portuguese and Spanish despite never seeing Portuguese <-

> Spanish data. The performance achieved was reasonable, with details available 
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in Table 5. This shows the potential benefit of shared knowledge in a single model. 

Table 5 Portuguese -> Spanish BLEU scores using various models from Johnson 

et al. [33]. 

Model BLEU 
PBMT bridged 28.99 
NMT bridged 30.91 
NMT Pt -> Es 31.50 

Model 1 (Pt -> En, En -> Es) 21.62 
Model 2 (En <-> [Es, Pt]) 24.75 

Model 2 + incremental training 31.77 

 

Meanwhile, Lee at al. also experimented with sharing encoders. At the time of 

their paper’s publication, word-based neural machine translation was the norm. 

Their paper proposed character-level neural machine translation and showed that 

it was possible to share a single character-level encoder across multiple languages 

by training a model on a many-to-one translation task [34]. Their results showed 

significant improvements, potentially sharing knowledge between several 

languages.  

 

 

Figure 7 Illustration of the architecture of Lee et al. in terms of encoders and 

decoders. 

Dong et al. created a machine translation model that could simultaneously 

translate sentences from one source language to multiple target languages [35]. A 

single encoder was used for all language pairs but utilising a different decoder for 

each language. The result was that their model outperformed models with 

different encoders and decoders for each translation direction. They showed that 

sharing the encoder can lead to positive results. However, they did not specify the 

order of training, nor did they take into account the genetic relationship between 
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the languages. The results for their experiments using large-scale corpora is 

shown in Table 6. 

 

 

Figure 8 Illustration of the architecture of Zhang et al. in terms of encoders and 

decoders. 

Table 6 Dong et al.’s results vs. single model given large-scale corpora in all 

language pairs [35]. 

Lang-Pair En-Es En-Fr En-Nl En-Pt 
Single NMT 26.65 21.22 28.75 20.27 
Multi Task 28.03 22.47 29.88 20.75 

Delta +1.38 +1.25 +1.13 +0.48 
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Chapter 3 Similarity-Based Language 

Clustering 

3.1 Overview 

The first part of this research involves several steps in order to process the 

languages. This consisted of selecting the languages, generating a language 

similarity matrix using ASJP, and clustering these languages based on similarity. 

3.2 Language Selection 

To leverage the advantage of language similarity, 30 Austronesian languages 

from Indonesia and 1 Austronesian language from Malaysia were chosen. These 

languages were chosen based on three criteria: 

1. Number of speakers according to Ethnologue [6] 

2. Language availability on the ASJP database 

3. Dataset availability 

The list of languages can be seen in Table 7. 

30 of the most-spoken Austronesian languages in Indonesia were selected, 

with some exceptions. Southern Min (nan), the 17th most-spoken language with 

around 1.3 million speakers, was not selected due to being a Sinitic language. 

Hakka Chinese (hak), spoken by around 600,000 people, was also not selected 

for the same reason. Three Austronesian languages were not selected due to not 

being available on the ASJP database. These were namely Ngaju (nij), North 

Moluccan Malay (max), and Toraja-Sa’dan (sda). For Javanese, the Yogyakarta 

dialect was chosen because of its status as the prestige dialect [36]. Northern Nias 

was similarly chosen for the Nias language [37]. 

Malay was added later due to training data being available and the fact that it 

is an Austronesian language. Linguistically speaking, Indonesian and Malaysian 

Malay are two standardised registers of the same language [38] . They can be 

treated as two dialects of the same language. Significant differences still exist, 

however, especially in terms of vocabulary. 
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Table 7 List of selected languages. 

No. Country Language ISO 639-3 
Code 

Speakers 
(Millions) 

1 Indonesia Indonesian ind 210 
2 Indonesia Javanese jav 84.3 
3 Indonesia Sundanese sun 42 
4 Malaysia Malay zlm 32 
5 Indonesia Madurese mad 13.6 
6 Indonesia Minangkabau min 5.5 
7 Indonesia Buginese bug 5 
8 Indonesia Palembang 

Malay 
mui 3.9 

9 Indonesia Banjarese bjn 3.5 
10 Indonesia Acehnese ace 3.5 
11 Indonesia Balinese ban 3.3 
12 Indonesia Betawi bew 2.7 
13 Indonesia Sasak sas 2.1 
14 Indonesia Batak Toba bbc 2 
15 Indonesia Makassarese mak 2.1 
16 Indonesia Ambonese 

Malay 
abs 1.9 

17 Indonesia Batak Dairi btd 1.2 
18 Indonesia Batak 

Simalungun 
bts 1.2 

19 Indonesia Batak 
Mandailing 

btm 1.1 

20 Indonesia Jambi Malay jax 1 
21 Indonesia Gorontalo gor 1 
22 Indonesia Nias nia 0.8 
23 Indonesia Manado 

Malay 
xmm 0.8 

24 Indonesia Batak 
Angkola 

akb 0.7 

25 Indonesia Batak Karo btx 0.6 
26 Indonesia Uab Meto aoz 0.6 
27 Indonesia Bima bhp 0.5 
28 Indonesia Manggarai mqy 0.5 
29 Indonesia Komering kge 0.5 
30 Indonesia Tetum tet 0.4 
31 Indonesia Rejang rej 0.4 
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3.3 ASJP-Based Similarity Calculation 

The Automated Similarity Judgment Program (ASJP) is a project initiated by 

the Max Planck Institute for the Science of Human History in Germany [14]. Its 

primary goal is to apply computational approaches to historical comparative 

linguistics by analyzing basic vocabulary lists from 5,590 languages. Each 

language is represented by a 40-item basic vocabulary wordlist, akin to the 

Swadesh list. 

Table 8 The 40 words in each language in the ASJP database [39]. 

blood fish (noun) mountain star 
bone full name (noun) stone 
breast (woman’s) hand new sun 
come hear night (dark time) tongue 
die horn (animal 

part) 
nose tooth 

dog I one tree 
drink (verb) knee path two 
ear leaf person water 
eye liver see we 
fire louse skin you 

3.3.1 ASJPcode 

The ASJP employs a simplified system to represent sounds known as ASJPcode 

[40]. Unlike the International Phonetic Alphabet (IPA), which uses a unique 

character for each distinctive sound [41], in ASJPcode a single character can 

represent one or more IPA sounds (or phones), supplemented by additional 

symbols to denote specific pronunciation features. Table 9 provides a 

comprehensive list of ASJPcode characters alongside their corresponding IPA 

phonemes. 
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Table 9 List of ASJPcode characters and their equivalent phones or features in 

IPA [40]. 

Character IPA Phoneme / Feature 
i i, ɪ, y, ʏ 
e e, ø 
E a, æ, ɛ, ɶ, œ, e 
3 ɨ, ɘ, ə, ɜ, ʉ, ɵ, ɞ 
a ɐ, ä 
u ɯ, u, ʊ 
o ɤ, ʌ, ɑ, o, ɔ, ɒ 
p p, ɸ 
b b, β 
m m 
f f 
v v 
8 θ, ð 
4 n̪ 
t t 
d d 
s s 
z z 
c t͡s, d͡z 
n n 
S ʃ 
Z ʒ 
C t͡ʃ 
j d͡ʒ 
T c, ɟ 
5 ɲ 
k k 
g g 
x x, ɣ 
N ŋ 
q q 
G ɢ 
X χ, ʁ, ħ, ʕ 
7 ʔ 
h h, ɦ 
l l 
L ʟ, ɭ, ʎ 
w w 
y j 
r r, ʀ, etc. (all varieties of “r-sounds”) 

! ǃ, ǀ, ǁ, ǂ 

~ 
Follows two consonants so that they are 

considered to be in the same position 

$ 
Follows three consonants so that they are 

considered to be in the same position 
“ Marks the preceding consonant as glottalised 
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3.3.2 Calculating Language Similarity 

The ASJP calculates language similarity using Levenshtein Distance (LD), 

which measures the minimum number of edits (insertions, deletions, or 

substitutions) required to transform one word into another. To normalize for 

word length differences, the Normalized Levenshtein Distance (LDN) is used, 

which divides the LD by the length of the longer word. Further refinement is 

achieved through LDND (LDN Divided), which adjusts for chance similarities by 

dividing the average LDN for word pairs with the same meaning by the average 

LDN for word pairs with different meanings [42]. 

The LDND distances between all languages pairs were calculated and a 

language similarity matrix was created. 

 

Figure 9 Language similarities (LDND) calculated using the ASJP for the 31 

selected languages.  
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3.4 Clustering 

Based on Nasution et al.’s work, the languages were clustered using k-means 

clustering [43]. Initially, only 30 languages were taken into account as Malay 

(zlm) was added at a later stage. Several comparisons were made. 

K-means clustering is an unsupervised clustering algorithm used to partition a 

dataset into k distinct, non-overlapping groups called “clusters”. K must first be 

chosen by the user. Then k initial centroids are selected from the dataset. Each 

data point is then assigned to the nearest centroid based on their distance to it, 

resulting in k clusters where each data point belongs to the cluster with the nearest 

centroid. New centroids are then calculated by taking the mean of all the data 

points assigned to each cluster. The new centroid is the average position of all 

points in the cluster. This is repeated until convergence, which is when centroids 

no longer change significantly or the assignment of data points no longer change 

between iterations [44]. 

Two types of input and two values of k were investigated. Nasution et al. in their 

research determined that a value of 5 for k was optimal for 32 Indonesian ethnic 

languages [43]. This research compares that with the value of 6 for k. As input to 

the k-means clustering algorithm, this research compares two types of input. The 

first is that each language has as its vector its similarity to all 29 other languages. 

This will henceforth be referred to as the vector method. The second is that the 

language similarity matrix is transformed into coordinates using Classic 

Multidimensional Scaling. This will henceforth be referred to as the coordinate 

method. The clusters are evaluated using purity against genetic relationships as 

established by linguists. 

Multidimensional Scaling is a set of data analysis methods which “allow one to 

infer the dimensions of the perceptual space of subjects” [45]. The input to this 

method is a measure of similarity or dissimilarity of the objects under 

investigation. The output is a spatial configuration in which the objects are 

represented as points on a Cartesian plane. Similar objects are represented by 

points close to each other; dissimilar objects are represented by points that are far 

apart. If we have a matrix of distances between data points, multidimensional 

scaling outputs the coordinates of these points. Therefore, if we have a matrix of 
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distances between languages, multidimensional scaling outputs the coordinates 

of these languages. 

 

Figure 10 Illustration of the results of multidimensional scaling on a language 

similarity matrix. 

Purity is a quantitative evaluation of a cluster compared to the gold set or 

ground truth [46]. Each result cluster is assumed to be the cluster that holds the 

most points from the clusters of the gold set (ground truth). The purity is 

computed using the sum of how many maximum points of each result cluster 

match with a considered gold set cluster divided by the total number of data 

points. 

 

 

Figure 11 Purity formula for kresult clusters c1, c2, …, ck and t gold set clusters 

g1, g2, …, gt. 
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Figure 12 Results of the vector method with k = 5 and their positions in the 

genetic linguistic tree [47]. 
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Firstly, the results of the using vector method as input and with the value of 5 

for k was evaluated. The results are compared with their positions in the genetic 

linguistic tree as determined by linguists. The data is from Glottolog [47]. This 

can be seen in Figure 12. 

The blue cluster is geographically spread out into clusters from Northwest 

Sumatra, South Sulawesi, the Lesser Sunda Islands, and 2 outliers. It has all the 

South Sulawesi and Bali-Sasak-Sumbawa languages and 2 of the 6 Batak 

languages. Betawi is an outlier from the Nuclear Malayic languages, all the others 

of which are in the red cluster. Manggarai is an outlier from the Central Malayo-

Polynesian languages. 

The yellow cluster has 2 of the 4 Central Malayo-Polynesian languages. 

The green cluster has 3 of the 6 Batak languages. 

The red cluster has most of the Nuclear Malayic languages except for Betawi, 

which is in the blue cluster. 

The black cluster has 1 of the 4 Central Malayo-Polynesian languages and 1 of 

the 6 Batak languages. 

Next, the results of using vector method as input and with the value of 6 for k 

was evaluated as illustrated in Figure 13. 

The blue cluster is geographically spread out. Acehnese, Sundanese, and 

Madurese are from the Malayo-Sumbawan languages excluding the Malayic 

languages. Uab Meto and Bima, which are part of this cluster, are related. Tetun, 

which is closer to Uab Meto than Bima, and Manggarai, which is closer to Bima 

than Uab Meto, are not included. 

The yellow cluster is clustered around Northwestern Sumatra and the Lesser 

Sunda Islands. It has 2 Batak languages and the related Nias language. It also has 

the closely related Bali and Sasak languages. Bima, which is closely related to 

Manggarai, is not included. The other Batak languages are also not included. 

The green cluster is composed of closely related varieties of Malay. Batak Karo 

is the only outlier since no other Batak languages are included. Jambi Malay is 

not included, despite being closely related to Minangkabau. 
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Figure 13 Results of the vector method with k = 6 and their positions in the 

genetic linguistic tree [47]. 
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The red cluster has the closely related Buginese and Makasar languages and 

has Tetun without Uab Meto, its closest relative among the chosen languages. 

The purple cluster only has one language, which is Jambi Malay. Based on 

linguistic genetic relationships, Jambi Malay could be part of the green cluster 

instead. 

The black cluster has 3 of the 4 chosen Southern Batak languages, while Toba 

Batak is in the yellow cluster. 

Overall, the vector method with k = 6 has some coherent clusters but several 

outliers such as Toba Batak and Jambi Malay. Notably, the green cluster of k = 5 

is exactly the same as the black cluster of k = 6. Furthermore, the red cluster of k 

= 5 is almost exactly the same as the green cluster of k = 6. The black cluster of k 

= 5 is similar to the blue cluster of k = 6. 

Afterwards, the coordinate method with both k = 5 and k = 6 were investigated 

and the results compared with the results of the vector method. The results can 

be seen in Figures 14, 15, 16, and 17. 

 

Figure 14 The results of the coordinate method using k = 5 illustrated on a 

Cartesian plane. 
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Figure 15 Results of the coordinate method with k = 5 and their positions in the 

genetic linguistic tree [47]. 
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Figure 16 The results of the coordinate method using k = 6 illustrated on a 

Cartesian plane. 

Comparing the results of all combinations, the Malayic languages are 

consistently grouped as one cluster with the coordinate method. For the vector 

method, for both values of k, there was one Malayic language which was in 

another group as can be seen in Figures 12 and 13. 

The other Malayo-Sumbawan languages excluding Acehnese are consistently 

in one cluster with the coordinate method. For the vector method, half are always 

in a different cluster as can be seen in Figures 12 and 13. 

The Batakic languages are grouped into one or two clusters in the coordinate 

method. In the coordinate method with k = 5, all the Batakic languages are notably 

grouped into one. For the vector method, the Batakic languages are consistently 

split in three different clusters as can be seen in Figures 12 and 13. 
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Figure 17 Results of the coordinate method with k = 6 and their positions in the 

genetic linguistic tree [47]. 
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For the vector method, the Central-Eastern-Malayo-Polynesian languages are 

consistently split into three clusters. In contrast, in the coordinate method three 

languages – except Manggarai – are consistently grouped as one cluster as can be 

seen in Figures 15 and 17. 

Overall, the vector method’s groupings are less in line with the linguistics-

derived genetic relationships between the languages. The vector method with k = 

6 also has a group with only one language in it. The coordinate method is more in 

line with the genetic relationships between the languages and has clusters with 

relatively balanced numbers, especially for k = 5. 

The purity was then calculated for a quantitative assessment of the clustering 

results. The ground truth for k = 5 and k = 6 can be seen in figures 22 and 23 and 

are based on the genetic relationship between the languages. The result was that 

for the vector method, purity was 0.77 for k = 5 and 0.73 for k = 6. For the 

coordinate method, purity was 0.8 for both k = 5 and k = 6. 

Table 10 Purity results. 

 Vector Method Coordinate Method 
k = 5 0.77 0.8 
k = 6 0.73 0.8 

 

The vector method purities are consistently lower than the coordinate method 

purities. Since the results of the coordinate method with k = 5 has a more cohesive 

cluster for the Batakic languages with all the Batakic languages in one cluster 

compared to k = 6 where the Batakic languages are separated into two clusters, k 

= 5 will be used. 

Malay was later added. Using the coordinate method with k = 5, it was grouped 

with the other Malayic languages as in Figure 24. 
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Figure 18 Comparison of the Malayic languages across the clustering results. 
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Figure 19 Comparison of the other Malayo-Sumbawan languages across the 

clustering results. 



 

 32 

 

Figure 20 Comparison of the Batakic languages across the clustering results. 
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Figure 21 Comparison of the Central-Eastern-Malayo-Polynesian languages 

across the clustering results. 
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Figure 22 Purity ground truth for k = 5 along with their position in the genetic 

linguistic tree [47]. 
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Figure 23 Purity ground truth for k = 6 along with their position in the genetic 

linguistic tree [47]. 
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Figure 24 Final clusters for the selected 31 languages. 

3.5 Hub Language 

In this research, the hub language is defined as the central pivot language 

which is the source language of all the language pairs. The encoder, which encodes 

input from this source language, will be reused for all the models. There are three 

methods to choose the hub language. Two are based on similarity while one is 

based on dataset availability. Due to issues with the availability of datasets, the 

purple cluster in Figure 24 of the final set of clusters which contained the Malayic 

languages was chosen. Only a subset of these languages were considered due to 

there being data for these languages, namely Indonesian, Malay, Palembang 

Malay, Banjarese Malay, and Minangkabau. 

The first method will henceforth be referred to as the summed distance method. 

This method to select the hub language involves calculating the sum of all 

distances to all other languages for each language. The language with the least 

sum of distances is considered the hub language. 

The second method involves the use of medoids, hence the medoid method. 

The medoid is the data point with the lowest distance to the centre (centroid) of 
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the cluster [48]. This is done by first calculating the position of the centroid and 

then calculating the distance to the centroid from each language, choosing the 

language with the lowest distance. 

The third method is based on the availability of the dataset. Specifically, the 

language with the highest amount of data available as a source language is chosen 

as the hub language. 

The results of the summed distance method point to Malay as the hub language, 

with the lowest summed distance at 209.08. These results can be seen in Table 11. 

The results of the medoid method point to Minangkabau as the medoid. While in 

terms of dataset availability, only Indonesian as the source language is available 

for each language pair. 

Table 11 Summed distances for all the selected languages. 

Language Summed Distance 
Malay 209.08 
Indonesian 213.50 
Palembang Malay 231.40 
Banjarese Malay 233.58 
Minangkabau 252.76 
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Chapter 4 Multiple Bilingual Dictionary 

Induction 

4.1 Overview 

The primary part of the research makes use of a sequence-to-sequence model 

utilising an LSTM, a Bi-LSTM, character-level one-hot embedding, and hub 

language encoder reuse to induce bilingual dictionaries. 

4.2 Sequence to Sequence Model 

A sequence-to-sequence model is a type of machine learning approach which 

turns one sequence into another sequence. It consists of an encoder which reads 

input one timestep at a time and transforms it into a vector and a decoder which 

then transforms the vector one timestep at a time into the desired output 

sequence [49]. It makes use of Recurrent Neural Networks (RNNs) for the 

encoder and the decoder and is particularly useful for sequential problems such 

as machine translation. In that case, it reads words from the input one by one and 

then predicts the output sentence word by word. 

RNNs however have a problem. This is the so-called vanishing gradient 

problem. For longer sequences, “as the error gradients are backpropagated 

through the RNN, they might shrink exponentially to zero,” which makes it 

difficult for RNNs to learn long-term dependencies [50]. To solve this issue, the 

Long Short-Term Memory (LSTM) was developed that was capable of learning 

with long-term dependencies [49]. An illustration can be seen in Figure 25. 

 

 



 

 39 

 

Figure 25 Illustration of a sequence-to-sequence LSTM [49]. The model reads an 

input sentence “ABC” and produces “WXYZ”. After outputting the end-of-

sentence token (<EOS>), it stops making predictions. 

4.3 Long-Short Term Memory (LSTM) 

Long-Short Term Memory (LSTM) networks are an upgraded variant of 

Recurrent Neural Network (RNN) architecture designed to solve the issue of 

vanishing gradients [51]. It can model temporal sequences and long-range 

dependencies more effectively than traditional RNNs. They are useful in 

situations where context from previous time steps is important, such as language 

modeling, speech recognition, and time series prediction. 

 

Figure 26 LSTM unit structure [13]. 

LSTMs solve these limitations of RNNs by using a more complex structure, 

including mechanisms called gates to regulate the flow of information. An LSTM 

unit consists of a cell, an input gate, an output gate, and a forget gate. These gates 

control the flow of information into, out of, and within the cell. The input gate 
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controls how much of the new information from the current input and the 

previous output should be added to the cell state, while the forget gate determines 

how much of the information from the previous output should be retained or 

forgotten. The output gate controls how much of the cell state should be output to 

the next time step. These additions allow them to handle long-term dependencies 

and reduce the vanishing gradient problem. 

4.4 Bidirectional Long-Short Term Memory (Bi-LSTM) 

Besides the vanishing gradient problem, Recurrent Neural Networks (RNNs) 

also face another issue. Since they process input in temporal order, the output of 

RNNs tends to be based mostly on the previous context [52]. The future context 

is not taken into account. The solution to this problem was the Bidirectional 

Recurrent Neural Network (BRNN). BRNNs read the input training sequence 

both forwards and backwards to two separate RNNs which are both connected to 

the same output layer. Thus, for every point in a sequence, the BRNN has 

information about the points before and after it. 

Bidirectional Long-Short Term Memory (Bi-LSTMs or BLSTMs) work much 

the way same way. There are two hidden LSTM layers. One reads the input 

forwards, while one reads the other backwards. They are both connected to the 

same output layer. Reading the input data from both forward and backward 

directions makes it particularly effective for tasks where context from both 

directions is essential, such as in natural language processing. 

 

Figure 27 Bi-LSTM architecture [13]. 
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4.5 Character-Level One-Hot Embedding 

The tokenisation method used is character-level one-hot embedding. In this 

process, words are broken down into their individual characters, with each vector 

having a uniform length based on the total number of characters. This one-hot 

vector is filled with zeros except for a single entry indicating the character’s 

position in the vocabulary. For example, assuming all 26 characters of the Latin 

alphabet are present in the corpus, the one-hot vector for the character ‘a’ would 

be [1, 0, 0, …, 0]. For the character ‘b’, it would be [0, 1, 0, 0, …, 0], and so forth. 

This sequence serves as the input for the Bi-LSTM encoder. 

 

 

Figure 28 Illustration of character-level one-hot encoding for the word “hello” 

assuming that there is only “hello” in the entire corpus. 

4.6 Hub Language Encoder Reuse 

In this research, the encoder of the hub language was reused for all subsequent 

models. The first model between the hub language and the first target language is 

trained normally, with a separate encoder and decoder. For training the second 

model, the first model’s encoder is reused as the encoder of the second model. 

Thus, the weights are updated and not created from scratch. Following that, the 

third model will reuse the second model’s encoder which itself was reused from 

the first model. The fourth model will do the same with the third model’s encoder. 
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Figure 29 Illustration of the architecture of this research. The encoder, which is 

trained to encode the input words which are in Indonesian, is reused across 

several language pairs such that for each language pair they reuse the encoder 

but have a separate decoder. 
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Chapter 5 Evaluation/Discussion 

5.1 Training Data 

Training data was obtained from Nasution et al. and Koto and Koto [28, 53]. 

The training data is composed of translation pairs between Indonesian and 

Banjarese Malay, Indonesian and Malay, Indonesian and Minangkabau, and 

Indonesian and Palembang Malay. Each contains a list of words in Indonesian 

followed by the same word in the target language, separated by a tab (“\t”). Pre-

processing was done to standardise the various datasets into a single template by 

replacing the “ - “ variant of “-“ which symbolises reduplication with “-“ and the 

removal of the carriage return (“\r”) character. 

The sizes of the datasets are different. There 10,343 translation pairs between 

Indonesian and Minangkabau, 5,099 between Indonesian and Palembang Malay, 

5,230 between Indonesian and Malay, and 2,029 between Indonesian and 

Banjarese Malay. Each dataset is divided into two sets, with 80% being used for 

training and 20% being used for testing. This yields 8,254 Indonesian-

Minangkabau translation pairs for training and 2,089 for testing, 4,079 

Indonesian-Palembang Malay translation pairs for training and 1,020 for testing, 

4,184 Indonesian-Malay translation pairs for training and 1,046 for testing, and 

1,621 Indonesian-Banjarese Malay translation pairs for training and 408 for 

testing. 

Table 12 Dataset size for each language pair. 

Language Pair 
Total 

Translation 
Pairs 

Training 
Translation 

Pairs 

Testing 
Translation 

Pairs 
Indonesian-

Minangkabau 
10,343 8,254 2,089 

Indonesian-
Palembang Malay 

5,099 4,079 1,020 

Indonesian-
Malay 

5,230 4,184 1,046 

Indonesian-
Banjarese Malay 

2,029 1,621 408 
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5.2 Parameters 

The parameters utilised for the experiments can be seen in the table below. The 

embedding size is 512 and batch size 64, trained for 120 epochs. The learning rate 

schedule technique used is learning rate decay. First, an initial learning rate is 

chosen, then it is reduced progressively according to a scheduler. The learning 

rate is set at 0.001 and it will decrease by 1% for every epoch after the 15th epoch. 

A slower learning rate may be desirable to acquire a more optimal set of weights, 

but training the model will also take more time. 

Table 13 Model parameters. 

 Value 
Embedding Size 512 
Epoch 120 
Batch Size 64 

5.3 K-Fold Cross Validation 

Validation was carried out using K-Fold Cross Validation. First, the data is 

randomly partitioned into k equally size subsets known as “folds”, hence k-fold. 

The value of k is specified by the user. The model is then trained and validated k 

times. For each iteration, one fold is held out as the validation set while the other 

k – 1 folds are used to train the model. Every data point is used for both training 

and validation exactly once across all iterations. For example, in the first iteration 

the model is trained on folds 2 through k and validated on fold 1. In the second 

iteration, the model is trained on folds 1 and 3 through k and validated on fold 2, 

and so on. This has the benefit of reducing overfitting by training and validating 

on different subsets of the data, maximises the use of available data by using it for 

both training and validation, and provides a better estimate of the model’s 

performance by looking at results from multiple folds to mitigate the effect of 

random variation in the data splits. In this research, k is set at 5. 
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Figure 30 K-Fold Cross Validation illustration [54]. 

5.4 Baseline 

As a baseline, four models are trained separately (i.e., without encoder reuse) 

to serve as a point of comparison for evaluating the performance of the proposed 

multiple bilingual dictionary induction reusing the hub language encoder. 

5.4.1 Description 

For all baseline models, the same architecture as the proposed method is used. 

A standard Bidirectional Long Short-Term Memory (Bi-LSTM) with character-

level one-hot encoding was used for the encoder, with each language pair having 

a separate encoder. For the decoder, a standard Long Short-Term Memory 

(LSTM) model also with character-level one-hot encoding was used, again with 

each language pair having a separate decoder. This is exactly the same method 

used by Resiandi et al. in their experiments [13]. 

5.4.2 Training and Validation 

For all baseline models, training and validation were conducted using the same 
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datasets as the proposed method. Specifically, datasets for the Indonesian-

Banjarese Malay, Indonesian-Malay, Indonesian-Minangkabau, and Indonesian-

Palembang Malay language pairs. The Indonesian-Minangkabau dataset is 

exactly the same dataset used by Resiandi et al. [13]. 80% of the data was used for 

training, and 20% was used for testing. The validation method used was K-Fold 

Cross Validation with k set to 5. 

5.4.3 Results 

The results of the baseline models are summarised in Table 11. These results 

provide a benchmark against which the performance improvements of the 

proposed method will be measured. 

Table 14 Evaluation of the baseline models. IND-BJN refers to Indonesian-

Banjarese Malay, IND-ZLM to Indonesian-Malay, IND-MIN to Indonesian 

Minangkabau, and IND-MUI to Indonesian-Palembang Malay. 

Language 
Pair 

K-Fold Cross Validation Results 

k = 1 k = 2 k = 3 k = 4 k = 5 
Average 
Accuracy 

IND-BJN 57.14 61.33 60.84 71.68 71.43 64.48 
IND-ZLM 59.37 63.19 67.21 67.40 66.92 64.82 
IND-MIN 83.09 84.30 86.00 85.42 85.42 84.85 
IND-MUI 58.82 57.75 67.16 68.43 68.14 64.06 

 

5.4.4 Discussion 

The results of the baseline Indonesian-Minangkabau model showed an average 

accuracy of 84.85%, slightly outperforming Resiandi et al.’s results at 83.55% [13]. 

The results of the other language pairs are about 20% lower than Indonesian-

Minangkabau. This is most likely due to the difference in the dataset size, with 

Indonesian-Minangkabau having about double the dataset size of Indonesian-

Malay and Indonesian-Palembang Malay and five times that of Indonesian-

Banjarese Malay. Noteworthy is the fact that despite having more than double the 

dataset size of Indonesian-Banjarese Malay, Indonesian-Malay and Indonesian-

Palembang Malay have roughly the same average accuracy. This suggests that 

increases in the performance of the model lies somewhere between the roughly 

5,000 word pairs of Indonesian-Malay and Indonesian-Palembang Malay and the 
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roughly 10,000 word pairs of Indonesian-Minangkabau. 

5.5 Evaluation Results 

A total of 18 models were trained according to 6 training orders. The baseline 

models were used as the first model and its encoder was reused in the subsequent 

models in the same training order. The effect of language similarity with the 

source language as well as the size of the dataset on the performance were 

investigated. The training orders are as follows: 

• Random (2 orders) 

• Descending based on similarity 

• Ascending based on similarity 

• Descending based on dataset size 

• Ascending based on dataset size 

• Descending similarity with largest dataset as the start 

The average accuracies of all the results are shown alongside the baseline 

model performance in Table 12. 

Table 15 Average accuracy of all trained models. 

Training 
Order 

IND-BJN IND-ZLM IND-MIN IND-MUI 

Baseline 64.48 64.82 84.85 64.06 
Random 1 65.27 64.82 84.22 64.14 
Random 2 64.53 64.49 84.68 64.06 

Descending 
Similarity 

64.58 64.82 84.70 64.10 

Ascending 
Similarity 

64.38 66.56 84.85 64.02 

Descending 
Dataset Size 

64.09 65.26 84.85 64.76 

Ascending 
Dataset Size 

64.48 65.60 84.60 64.02 

Descending 
Similarity 

with Largest 
Dataset as 
the Start 

65.96 66.24 84.85 64.43 

 

The results for each order will be compared with the baseline. Additionally, the 
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similarity-based and dataset size-based orders will also be compared with the 

random orders. 

5.5.1 Random 1 

The training order of Random 1 is Malay-Minangkabau-Palembang Malay-

Banjarese Malay. First, the baseline Indonesian-Malay model is used as the 

starting point. The Indonesian-Minangkabau model reuses the encoder of 

Indonesian-Malay, and then its encoder is in turn reused by Indonesian-

Palembang Malay, and so on. 

Table 16 Average accuracies of the baseline models and Random 1, presented in 

order of Random 1 training. Language similarities are also shown under the 

language pair. 

 
IND-ZLM / 

85% 
IND-MIN / 

62% 
IND-MUI / 

68% 
IND-BJN / 

72% 
Baseline 64.82 84.85 64.06 64.48 

Random 1 64.82 84.22 64.14 65.27 
Delta 0.00 -0.63 +0.08 +0.79 

 

 

Figure 31 Comparison of the baseline and Random 1 results. 
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There was a slight decrease in the performance of Indonesian-Minangkabau, 

while slight increases were evident for Indonesian-Palembang Malay and 

Indonesian-Banjarese Malay. Things to note include the fact that Indonesian-

Minangkabau has the lowest similarity to each other. In terms of dataset size, 

Indonesian-Minangkabau with around 10,000 word pairs suffers a decrease 

while those of Indonesian-Palembang Malay with around 5,000 word pairs and 

Indonesian-Banjarese Malay with around 2,000 word pairs experienced 

increases. 

5.5.2 Random 2 

The training order of Random 2 is Palembang Malay-Banjarese Malay-Malay-

Minangkabau. First, the baseline Indonesian-Palembang Malay model is used as 

the starting point. The Indonesian-Banjarese Malay model reuses the encoder of 

Indonesian-Palembang Malay, and then its encoder is in turn reused by 

Indonesian-Malay, and so on. 

Table 17 Average accuracies of the baseline models and Random 2, presented in 

order of Random 2 training. Language similarities are also shown under the 

language pair. 

 
IND-MUI / 

68% 
IND-BJN / 

72% 
IND-ZLM / 

85% 
IND-MIN / 

62% 
Baseline 64.06 64.48 64.82 84.85 

Random 2 64.06 64.53 64.49 84.68 
Delta 0.00 +0.05 -0.33 -0.17 

 

There were decreases for both Indonesian-Malay and Indonesian-

Minangkabau, while there was a slight increase for Indonesian-Banjarese Malay. 

No pattern seems evident from the results of Random 2. 
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Figure 32 Comparison of the baseline and Random 2 results. 
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Table 18 Average accuracies of the baseline models, Randoms 1 and 2, and 

Descending Similarity, presented in order of descending similarity. Language 

similarities are also shown under the language pair. 

 
IND-ZLM / 

85% 
IND-BJN / 

72% 
IND-MUI / 

68% 
IND-MIN / 

62% 
Comparison with the Baseline 

Baseline 64.82 64.48 64.06 84.85 
Descending 
Similarity 

64.82 64.58 64.10 84.70 

Delta 0.00 +0.10 +0.04 -0.05 
Comparison with Random 1 

Random 1 64.82 65.27 64.14 84.22 
Descending 
Similarity 

64.82 64.58 64.10 84.70 

Delta 0.00 -0.69 -0.04 +0.48 
Comparison with Random 2 

Random 2 64.49 64.53 64.06 84.85 
Descending 
Similarity 

64.82 64.58 64.10 84.70 

Delta +0.33 +0.05 +0.04 -0.15 

 

 

Figure 33 Comparison of the baseline, Randoms 1 and 2, and Descending 

Similarity results. 
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5.5.4 Ascending Similarity 

The training order of Ascending Similarity starts from the language least 

similar to Indonesian to the most similar. Specifically, the training order is 

Minangkabau-Palembang Malay-Banjarese Malay-Malay. First, the baseline 

Indonesian-Minangkabau model is used as the starting point. The Indonesian-

Palembang Malay model reuses the encoder of Indonesian-Minangkabau, and 

then its encoder is in turn reused by Indonesian-Banjarese Malay, and so on. 

Table 19 Average accuracies of the baseline models, Randoms 1 and 2, and 

Ascending Similarity, presented in order of ascending similarity. Language 

similarities are also sho`wn under the language pair. 

 
IND-MIN / 

62% 
IND-MUI / 

68% 
IND-BJN / 

72% 
IND-ZLM / 

85% 
Comparison with the Baseline 

Baseline 84.85 64.06 64.48 64.82 
Ascending 
Similarity 

84.85 64.02 64.38 66.56 

Delta 0.00 -0.04 -0.10 +1.74 
Comparison with Random 1 

Random 1 84.22 64.14 65.27 64.82 
Ascending 
Similarity 

84.85 64.02 64.38 66.56 

Delta +0.63 -0.12 -0.89 +1.74 
Comparison with Random 2 

Random 2 84.85 64.06 64.53 64.49 
Ascending 
Similarity 

84.85 64.02 64.38 66.56 

Delta 0.00 -0.04 -0.15 +2.07 

 

 

Compared with the baselines, both Indonesian-Palembang Malay and 

Indonesian-Banjarese experienced slight decreases, but most notable 

Indonesian-Malay had a significant increase in performance. This is true even 

when compared with Randoms 1 and 2. This might be due to Indonesian and 

Malay’s high similarity, at 85%. 

5.5.5 Descending Dataset Size 

The training order of Descending Dataset Size starts from the language with 
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the most training data to the least. Specifically, the training order is 

Minangkabau-Malay-Palembang Malay-Banjarese Malay. First, the baseline 

Indonesian-Minangkabau model is used as the starting point. The Indonesian-

Malay model reuses the encoder of Indonesian-Minangkabau, and then its 

encoder is in turn reused by Indonesian-Palembang Malay, and so on. 

Both Indonesian-Malay and Indonesian-Palembang Malay experienced 

increases in accuracy in this method, while Indonesian-Banjarese Malay saw 

lower accuracy. The increases in accuracy are quite significant. This is true even 

when compared with both Random 1 and Random 2. This is possibly due to the 

influence of dataset size. Specifically, it might be because the model is leveraging 

the knowledge learnt from the large dataset of Indonesian-Minangkabau. For the 

case of Indonesian-Banjarese Malay, it might be because it had the least dataset 

size to begin with. 

Table 20 Average accuracies of the baseline models, Randoms 1 and 2, and 

Descending Dataset Size, presented in descending order of training data size. 

Language similarities are also shown under the language pair. 

 
IND-MIN / 

62% 
IND-ZLM / 

85% 
IND-MUI / 

68% 
IND-BJN / 

72% 
Comparison with the Baseline 

Baseline 84.85 64.82 64.06 64.48 
Descending 

Dataset 
Size 

84.85 65.26 64.76 64.09 

Delta 0.00 +0.44 +0.70 -0.39 
Comparison with Random 1 

Random 1 84.22 64.82 64.14 65.27 
Descending 

Dataset 
Size 

84.85 65.26 64.76 64.09 

Delta +0.63 +0.44 +0.62 -1.18 
Comparison with Random 2 

Random 2 84.85 64.49 64.06 64.53 
Descending 

Dataset 
Size 

84.85 65.26 64.76 64.09 

Delta 0.00 +0.77 +0.70 -0.44 
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5.5.6 Ascending Dataset Size 

The training order of Ascending Dataset Size starts from the language with the 

least training data to the most. Specifically, the training order is Banjarese Malay-

Palembang Malay-Malay-Minangkabau. First, the baseline Indonesian-Banjarese 

Malay model is used as the starting point. The Indonesian-Palembang Malay 

model reuses the encoder of Indonesian-Banjarese Malay, and then its encoder is 

in turn reused by Indonesian- Malay, and so on. 

Table 21 Average accuracies of the baseline models, Randoms 1 and 2, and 

Ascending Dataset Size, presented in ascending order of training data size. 

Language similarities are also shown under the language pair. 

 
IND-BJN / 

72% 
IND-MUI / 

68% 
IND-ZLM / 

85% 
IND-MIN / 

62% 
Comparison with the Baseline 

Baseline 64.48 64.06 64.82 84.85 
Descending 

Dataset 
Size 

64.48 64.02 65.60 84.60 

Delta 0.00 -0.04 +1.22 -0.25 
Comparison with Random 1 

Random 1 65.27 64.14 64.82 84.22 
Ascending 

Dataset 
Size 

64.48 64.02 65.60 84.60 

Delta -0.79 -0.12 +1.22 +0.38 
Comparison with Random 2 

Random 2 64.53 64.06 64.49 84.85 
Ascending 

Dataset 
Size 

64.48 64.02 65.60 84.60 

Delta -0.05 -0.04 +1.11 -0.25 

 

Improvements were seen across the board for Indonesian-Malay, while the 

accuracy of Indonesian-Palembang Malay consistently dropped. For Indonesian-

Minangkabau, it was mixed but mostly decreased. There was a slight increase in 

performance compared to Random 1. 
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Figure 34 Comparison of the baseline, Randoms 1 and 2, and Ascending Dataset 

Size results. 
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Indonesian-Banjarese Malay as well despite having the least amount of data. 

Table 22 Average accuracies of the baseline models, Randoms 1 and 2, and 

Descending Similarity with Largest Dataset as the Start, presented in the 

aforementioned order. Language similarities are also shown under the language 

pair. 

 
IND-MIN / 

62% 
IND-ZLM / 

85% 
IND-BJN / 

72% 
IND-MUI / 

68% 
Comparison with the Baseline 

Baseline 84.85 64.82 64.48 64.06 
Descending 
Similarity 

with 
Largest 

Dataset as 
the Start 

84.85 66.24 65.96 64.43 

Delta 0.00 +1.42 +1.48 +0.37 
Comparison with Random 1 

Random 1 84.22 64.82 65.27 64.14 
Descending 
Similarity 

with 
Largest 

Dataset as 
the Start 

84.85 66.24 65.96 64.43 

Delta +0.63 +1.42 +0.69 +0.29 
Comparison with Random 2 

Random 2 84.85 64.49 64.53 64.06 
Descending 
Similarity 

with 
Largest 

Dataset as 
the Start 

84.85 66.24 65.96 64.43 

Delta 0.00 +1.75 +1.43 +0.37 

 

5.5.8 Malay as the Hub Language 

To investigate the effect of reusing the encoder of the hub language based on 

similarity, more models with Malay as the hub language were trained. Unlike the 

models using Indonesian as the hub language, the models utilising Malay as the 

hub language have roughly the same amount of data, removing dataset size as a 
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variable. 

Training data was obtained from Nasution et al. [28]. The training data is 

composed of translation pairs between Malay and Banjarese Malay, Malay and 

Indonesian, Malay and Minangkabau, and Malay and Palembang Malay. Each 

contains a list of words in Indonesian followed by the same word in the target 

language, separated by a tab (“\t”). Pre-processing was done to standardise the 

various datasets into a single template by replacing the “ - “ variant of “-“ which 

symbolises reduplication with “-“ and the removal of the carriage return (“\r”) 

character. Pairs containing explanations between parentheses, numbers, and the 

characters “/” and “,” were also removed, while capital letters were all made 

lowercase. 

There are 2,961 translation pairs between Malay and Minangkabau, 2,008 

between Malay and Palembang Malay, 2,262 between Malay and Indonesian, and 

2,002 between Malay and Banjarese Malay. Each dataset is divided into two sets, 

with 80% being used for training and 20% being used for testing. 

The training order of Descending Similarity starts from the language most 

similar to Malay to the least similar. Specifically, the training order is Indonesian-

Palembang Malay-Banjarese Malay-Minangkabau. First, the baseline Malay-

Indonesian model is used as the starting point. The Malay-Palembang Malay 

model reuses the encoder of Malay-Indonesian, and then its encoder is in turn 

reused by Malay-Banjarese Malay, and so on. 

The results show that there is little consistent improvement when compared to 

the average random results as well as the baselines. The results using Decreasing 

Similarity are overall similar to the baselines, though significant improvements 

for Palembang Malay and especially Banjarese Malay were seen when compared 

with the average random results. 
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Table 23 Average accuracies of the baseline models, two randoms, and 

Descending Similarity, presented in the aforementioned order. Language 

similarities are also shown under the language pair. 

 
ZLM-IND / 

85% 
ZLM-MUI / 

73% 
ZLM-BJN / 

71% 
ZLM-MIN / 

62% 
Comparison with the Baseline 

Baseline 64.94% 48.01% 53.17% 25.76% 
Descending 
Similarity 

64.94% 47.81% 53.16% 27.09% 

Delta 0.00 -0.20 -0.01 +1.33 
Comparison with Random Average 

Random 
Avg 

65.59% 45.25% 43.00% 30.46% 

Descending 
Similarity 

64.94% 47.81% 53.16% 27.09% 

Delta -0.65 +2.56 +10.16 -3.37 

 

5.5.9 Minangkabau as the Hub Language 

More models with Minangkabau as the hub language were also trained. 

Similarly, the models utilising Mingkabau as the hub language have roughly the 

same amount of data, removing dataset size as a variable. 

Training data was obtained from Nasution et al. [28]. The training data is 

composed of translation pairs between Minangkabau and Banjarese Malay, 

Minangkabau and Indonesian, Minangkabau and Malay, and Minangkabau and 

Palembang Malay. Each contains a list of words in Indonesian followed by the 

same word in the target language, separated by a tab (“\t”). Pre-processing was 

done to standardise the various datasets into a single template by replacing the “ - 

“ variant of “-“ which symbolises reduplication with “-“ and the removal of the 

carriage return (“\r”) character. Pairs containing explanations between 

parentheses, numbers, and the characters “/” and “,” were also removed, while 

capital letters were all made lowercase. 

There are 2,961 translation pairs between Minangkabau and Malay, 1,998 

between Minangkabau and Palembang Malay, 2,536 between Minangkabau and 

Indonesian, and 1,974 between Minangkabau and Banjarese Malay. Each dataset 

is divided into two sets, with 80% being used for training and 20% being used for 
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testing. 

The training order of Descending Similarity starts from the language most 

similar to Minangkabau to the least similar. Specifically, the training order is 

Palembang Malay-Indonesian-Malay-Banjarese Malay. First, the baseline 

Minangkabau-Palembang Malay model is used as the starting point. The 

Minangkabau-Indonesian model reuses the encoder of Minangkabau-Palembang 

Malay, and then its encoder is in turn reused by Minangkabau-Malay, and so on. 

The results show that there is little consistent improvement when compared to 

the average random results as well as the baselines. The results using Decreasing 

Similarity are overall similar to the baselines and averaged randoms. 

Table 24 Average accuracies of the baseline models, two randoms, and 

Descending Similarity, presented in the aforementioned order. Language 

similarities are also shown under the language pair. 

 
MIN-MUI / 

64% 
MIN-IND / 

62% 
MIN-ZLM / 

62% 
MIN-BJN / 

60% 
Comparison with the Baseline 

Baseline 57.10% 45.11% 51.26% 59.54% 
Descending 
Similarity 

57.10% 45.51% 55.20% 54.48% 

Delta 0.00 +0.40 +3.94 -5.06 
Comparison with Random Average 

Random 
Avg 

54.00% 46.61% 55.03% 54.92% 

Descending 
Similarity 

57.10% 45.51% 55.20% 54.48% 

Delta +3.10 -1.10 +0.17 -0.44 
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Chapter 6 Conclusion 

It can be argued that reusing the encoder of the hub language can lead to 

improvements in the automatic bilingual dictionary induction process. In 

particular, the size of training data available seems to have a large influence on 

whether it can improve the performance of models reusing the encoder of the hub 

language. Training first with the language pair with the most training data and 

then descending from there shows improvements. The accuracy of Indonesian-

Malay at 65.26% outperformed the baseline and random orders. Similarly, 

Indonesian-Minangkabau at 64.76% outperformed the baseline and random 

orders. Pure similarity-based orders had mixed results but overall did not 

improve the performance or had negligible improvements, which was also seen 

when using Malay and Minangkabau as the hub languages. 

However, combining dataset size and similarity produced significant results. 

Using as the first model the language pair with the largest dataset size 

(Indonesian-Minangkabau) and then training the rest in descending similarity 

order led to promising results. Across the board, all models improved compared 

to the baseline and random orders. At 66.24% accuracy, Indonesian-Malay saw 

improvements ranging from 1.42% to 1.75% compared to the baseline and 

random orders. Indonesian-Banjarese Malay at 65.96% saw improvements 

ranging from 0.69% to 1.48% compared to the baseline and random orders. 

Indonesian-Palembang Malay too at 64.43% saw increases ranging from 0.29% 

to 0.37%. 

In conclusion, reusing the hub language can improve the performance of 

models taking into account the size of the dataset and similarity of the languages 

involved. The optimal order is to use the language pair with the largest dataset as 

the first model and then training based on descending similarity order afterwards. 
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